Automotive MCU Market Hot in 2022, Market Size Estimated to Grow by 25.7% Annually

Although the overall economy is unstable, the use of automotive MCUs is still increasing gradually due to electric and smart vehicle trends. In order to meet market demand, IDMs have strengthened their investment in production resources. There will also be volume and price growth in 2022. Overall market size is estimated to reach US$8.58 billion, with an annual growth rate of 25.7%.

Automotive MCU market dominated by major international IDMs, 32-bit penetration rate will reach 80.1% in 2022

NXP, Renesas, and Infineon account for approximately 70% of global automotive MCU market share. In 2022, NXP will focus on the development of its S32 series and presented a S32M test chip featuring TSMC’s 5nm process, symbolizing a major milestone in the development of automotive chips. Renesas is focusing on its RH850 series, supplemented by the Low Power RL78 to stabilize development. Infineon’s automotive MCU development is focused on its AURIX series which features a self-developed TriCore core and is designed to perform mid-to-high-level automotive system control.

In general, major international IDMs have a complete line of automotive MCUs. With the increasing number of automotive functions, requirements for MCU computing power have advanced. Considering the optimization of major manufacturers’ product portfolios, the penetration rate of 32-Bit MCUs will also increase year by year and is forecast to grow to 80.1% in 2022.

Nuvoton ranks among top ten MCUs producers worldwide, Taiwanese manufacturers’ operations suffer headwinds after tide of shortages recedes

Taiwanese MCU manufacturers are represented by Nuvoton, Holtek, and Sonix. There are other manufacturers such as Generalplus, Nyquest, Hycon, and Megawin but their revenue scale is small and proportion of MCU is low. Overall, only Nuvoton is an IDM with a MCU market share ranked among the top ten in the world and readily available automotive MCU products.

Taiwanese manufacturers mainly focus on mid-to-low-end consumer electronics applications with low barriers to entry. Most of them are fabless manufacturers, meaning the barriers to entry for capital are also low. Therefore, it is difficult to compare their product portfolios with major international manufacturers. After the shortage of semiconductors subsided, operation in 1H22 inevitably encountered headwinds and demand for consumer electronics in 2H22 will continue to be weak, signaling the arrival of a cold winter for the consumer MCU market.

(Image credit: Pixabay)


Irrespective of US sanctions and the Pandemic, China’s IC sales to Grow by Another 11% in 2022

In recent years, China’s IC sales have been increasing year over year. Although sales have been suppressed by the United States and the impact of the pandemic, China’s IC sales still increased by 17% in 2020. Benefiting from the development of terminal applications such as 5G, online office, and smart cars, China’s IC sales grew by 18.2% in 2021 and it is expected to rise by 11.21% in 2022.

Currently, China’s 12-inch foundries are primarily owned by SMIC and Hua Hong Semiconductor. SMIC’s 12-inch fabs are located in Beijing and Shanghai while Hua Hong’s 12-inch fab is located in Wuxi. SMIC’s annual sales revenue in 2021 was US$5.44 billion, growing 39% YoY, and it posted net profit of US$1.775 billion, growing 147.76% YoY. From the perspective of revenue structure, 12-inch products contributed approximately 60% of SMIC’s revenue in the past year.

From the perspective of production capacity, SMIC’s capacity utilization rate has hovered around 100% in the past year. In 1Q22, SMIC’s capacity utilization rate was 100.4%, with a monthly production capacity of 613,400 units of 8-inch equivalent. . In 2021, new production capacity was 100,000 units/month (converted to 8 inches), of which 45,000 units/month was added as 8-inch wafers. At present, SMIC is still accelerating production expansion. Its project in Lingang, Shanghai has broken ground and its two projects in Beijing and Shenzhen are progressing steadily. Production is expected at these fabs by the end of 2022, mainly as 12-inch capacity.

Hua Hong Semiconductor posted operating income of US$1.631 billion in 2021, a YoY increase of 69.64%. From the perspective of revenue structure, Hua Hong Group primarily focused on 8-inch production capacity before 2020. As production commenced at Hua Hong Wuxi’s 12-inch project, Hua Hong completed the leap from 8 inches to 12 inch wafers. In the past year, Hua Hong’s average monthly production capacity of 8-inch wafers was 194,000 units and revenue was US$1.15 billion, accounting for 70.55% of total revenue. The average monthly production capacity of 12-inch wafers was 56,000 wafers and revenue was US$480 million, accounting for 29.45% of revenue, and the proportion of 12-inch revenue is increasing. In 1Q22, Hua Hong Semiconductor’s 12-inch revenue accounted for 44.1% of total revenue, an increase of 5 percentage points from the previous quarter. With the completion of the second phase of the Wuxi project, 12-inch revenue is expected to, once again, achieve substantial growth.

It is worth noting that since the Sino-US trade war, China’s substitution of domestic products has become mainstream, especially in the foundry and packaging and testing portions of the manufacturing process. In addition, the tense relationship between supply and demand and hobbled logistics caused by the pandemic has also catalyzed an increase in the proportion of fab revenue coming from China. From the perspective of wafer foundries, Hua Hong Semiconductor’s China revenue will account for 76% of total revenue in 1Q22. In terms of SMIC, although 4Q20 was categorized by an inability to manufacture Huawei orders and the proportion of revenue from China and Hong Kong fell from 69.7% in 3Q20 to 56.1% in 4Q20, as tension rose between supply and demand, lost Huawei orders have been taken up by other Chinese IC designers. In 1Q22, SMIC’s revenue from China and Hong Kong accounted for 68.4% of total revenue, a return to its peak level in 3Q20.

Behind record high sales of semiconductors is an unrelenting spike in demand. In order to alleviate the imbalance between supply and demand, the world’s major fabs are accelerating new production capacity and China’s fabs represented by SMIC and Hua Hong are also stepping up production expansion. From the perspective of the expansion structure, the current focus of fabs is still on the expansion of 12-inch wafers. The primary reason for this is that 12-inch wafers are characterized by higher production efficiency and lower unit consumables, with a comprehensive equipment supply chain. In the past two years, China has built a total of 11 projects involving 12-inch wafers. However, due to factors such as the pandemic, tide of production expansion, and lack of chips for equipment, the lead time of semiconductor equipment has been continuously drawn out, resulting in a slowdown in fab expansion. In addition, 8-inch capacity expansion is relatively slow due to equipment constraints. From the perspective of China’s foundry market, among new wafer production capacity (8 inch equivalent) from 2020 to 2021, 12 inch capacity accounted for 58.17%, 8 inch capacity accounted for 22%, and 6 inch capacity accounted for 19.83%.


Global Packaging and Testing Output Value Reached US$82.139 Billion in 2021, 25.83% YoY, China Becomes Fastest Growing Market

According to TrendForce research, driven by strong demand for 5G mobile phones, base stations, automobiles, and HPCs, the global output value of packaging and testing (including foundry and IDM) reached US$82.139 billion in 2021, or 25.83% YoY. This upward momentum is forecast to continue in 2022, taking output value to US$101.185 billion in 2022, or 23.19% YoY. From the perspective of regional distribution, China’s IC packaging and testing output value in 2021 was approximately US$39.443 billion, increasing 31.7% compared with US$29.941 billion in 2020, becoming the world’s fastest-growing major market in terms of packaging and testing output value.

Shanghai pandemic lengthens overall lead time, hinders China’s packaging and testing growth in 2Q22

In 2Q22, Shanghai was locked down due to the COVID-19 pandemic. Although wafer fabs and packaging and testing plants were still operating normally, the pandemic hindered logistics and the materials required for packaging could not be effectively shipped from Shanghai, affecting transportation efficiency and logistics costs to a certain degree. Overall, China’s packaging and testing industry was not significantly affected by the pandemic in 1Q22 but, in 2Q22, the industry will bear the brunt of the COVID-19 situation, with packaging and testing companies experiencing prolonged overall lead times and sluggish revenue growth.

NEVs and HPCs to become new growth drivers, fabs and packaging and testing companies accelerate deployment

The growth rate of smartphones, a core driving force behind IC packaging and testing output value, is slowing down. Since smartphone shipments peaked at 14.575 million units in 2017, volume has not surpassed this number in the ensuing years. Even though the upgrade from 4G to 5G brought about a wave of replacements, the overall smartphone market has reached maturity, with slowing growth or even negative growth, so its demand on wafer manufacturing and packaging and testing is likewise slowing down.

Aside from mobile phones, growth in HPC and new energy vehicles (NEV) is becoming a new revenue engine. At present, the world’s major automobile production countries are accelerating the penetration rate of NEVs, and packaging and testing companies are also accelerating their investment in the automotive and HPC sectors. From the perspective of fabs, TSMC’s HPC revenue accounted for 41% of total packaging and testing revenue in 1Q22, surpassing mobile phones for the first time and becoming the largest source of the company’s packaging and testing revenue.

(Image credit: Unsplash)


Third-generation Semiconductor Development from the Perspective of Photovoltaic Energy Storage Applications

With the continuous deterioration of the global environment and the exhaustion of fossil fuel energy, countries around the world are looking for new energy sources suitable for human survival and development. The construction of photovoltaic energy storage projects is an important measure to implement energy transformation. Third-generation semiconductors have the characteristics of high frequency, high power, high voltage resistance, high temperature resistance, and radiation resistance, which can promote highly efficient, highly reliably, and low cost of photovoltaic energy storage inverters and the green and low-carbon development of energy.

SiC will be widely used in high-power string/central inverters, while GaN is more suitable for household micro-inverters

As the photovoltaic industry enters the era of “large components, large inverters, large-span brackets, and large strings,” the voltage level of photovoltaic power plants has increased from 1000V to over 1500V and high-voltage SiC power components will be used extensively in string and centralized inverters. For residential micro-inverters with a power of up to 5kW, GaN power components have more advantages. Not only can they significantly improve overall conversion efficiency, effectively reduce the levelized cost of energy (LCOE), but also allow users to easily build smaller, lighter, and more reliable inverters.

Key SiC substrates are crucial to the development of third-generation semiconductors and major manufacturers are competing to get to market

SiC substrate is regarded as the core raw material of third-generation semiconductors. Its crystal growth is slow and process technology complex. Mass production is not easy. Conductive substrates can produce SiC power electronic components while semi-insulating substrates can be used for the fabrication of GaN microwave radio frequency components. In addition, due to the high difficulty of substrate preparation, its value is relatively high. The cost of SiC substrate accounts for approximately 50% of the total cost of components which demonstrates its importance in the industrial chain.

At present, the supply of the global SiC market is firmly in the hands of substrate manufacturers. Wolfspeed, II-VI and SiCrystal (subsidiary of ROHM) together account for nearly 90% of shipments. IDM manufacturers such as Infineon, STM, and Onsemi are actively developing upstream SiC substrates and expect to take full advantage of the supply chain to strengthen their competitiveness. Everyone wants to get a piece of the pie, so the battle for SiC substrates will become more and more fierce, but the wait will not be long to see where the industry eventually goes in coming years.

(Image credit: Pixabay )


Demand for Consumer Electronics Sluggish, NAND Flash Wafer Pricing Leads Downturn in May, Says TrendForce

According to TrendForce research, looking at NAND Flash wafers, the pricing of which more sensitively reflects the market, suppliers are increasingly motivated to cut prices in exchange for sales due to weak retail demand since March and a more conservative outlook for shipments of other end products. The price of NAND Flash wafers is expected to begin falling in May and the supply of NAND Flash will gradually overtake demand in 2H22. The price decline of NAND Flash wafers in 3Q22 may reach 5~10%.

At the same time, TrendForce indicates that February’s contamination incident at Kioxia was expected to tighten the market in 2Q22 and 3Q22. However, as a consequence of rising inflation and the war between Russia and Ukraine, market demand for consumer products in the traditional peak season of the second half of the year is trending conservative and the prices of client SSD, eMMC, and UFS in 3Q22 will be flat compared to 2Q22, breaking from the original expectation that prices may rise. In terms of enterprise SSDs, as demand for data centers remains strong, no significant correction in demand has yet been observed. However, as the overall NAND Flash market gradually moves into oversupply, prices will only grow slightly by approximately 0~5% in 3Q22.

Weakening demand in a period of unabated production expansion, NAND Flash may face oversupply in 2H22

From the perspective of demand, due to the war between Russia and Ukraine, rising inflation, and the pandemic in China, overall demand for consumer electronics is weak. Demand for Chromebooks dwindled rapidly at the beginning of 2022 as exogenous demand from the pandemic disappeared. In terms of conventional notebooks, the situation with commercial models and consumer models present a divergence. Demand for commercial notebooks is benefiting from a return to the office occurring in many countries, while the opposite is true for consumer notebooks. Therefore, overall demand for notebooks in 2022 will be lower compared to demand in 2021. In terms of smart phones, the production volume of Chinese brands has been suppressed due to China’s flailing against the pandemic and government lockdowns stemming from a continued insistence on a dynamic zero-COVID policy, resulting in continuous downward revisions of global smart phone production for 2022.

In terms of supply, Samsung is focusing on substantial future growth in the enterprise SSD sector and continues to maintain its original capacity expansion plan, especially after its NAND production line was derailed due to the Xi’an lockdown at the end of last year. In order to stabilize future plant operations, the capacity of its P2L fab in South Korea continues to increase. Yangtze Memory Technologies (YMTC) will also expand its wafer input plan in 2H22. Since the 128L yield rate has reached the company’s goal and it had successfully broken into the tier 1 smartphone supply chain in 1H22, YMTC will also accelerate production at its second factory in Wuhan. Therefore, TrendForce indicates, since an overall weakness in demand will linger in 2022 yet certain manufacturers will maintain a pattern of expanding production, the NAND Flash market will face oversupply in 2H22. As mentioned above, the prices of various products will be flat or experience reduced growth in 3Q22.

  • Page 1
  • 26 page(s)
  • 130 result(s)