Insights
Looking at the development of the global SiC (silicon carbide) industry, IDMs in Europe and the United States occupy an absolute leading position, with the United States accounting for more than half of the market share in the substrate material sector. In order to ensure long-term and stable development of the SiC business, major manufacturers have also successively intervened in key upstream substrate materials in an effort to control the supply chain. Therefore, vertical integration has become an important trend in the development of the SiC industry. The global market value of SiC power semiconductors is estimated to be approximately US$1.589 billion in 2022 and will reach US$5.302 billion by 2026, with a CAGR of 35%.
Wolfspeed holds more than half the world’s SiC substrate market share and is first to move to 8-inch wafers
SiC substrates are characterized by difficult growth conditions, arduous processing, and high technical thresholds, which have become a key constraint on downstream production capacity. At present, only a few manufacturers such as Wolfspeed, ROHM, ON Semi, and STM have the ability to independently produce SiC crystals. From the perspective of SiC substrate market share in 2021, the leading players in order of market share are: Wolfspeed at 62%, II-VI at 14%, SiCrystal at 13%, SK Siltron at 5%, and TankeBlue at 4%.
Increasing the number of components on a single wafer is one of the main methods of further reducing the cost of SiC power components, so the industry is fully promoting 8-inch transformation. 8-inch SiC wafers have issues such as difficult material growth, laborious dicing, and losses during dicing. At this stage, yield rate is low. Therefore, 8-inch SiC wafers will not have much impact on the industry in the short term but, in the long run, with breakthroughs in material growth and process yield, the final chip cost of 8-inch wafers will inevitably present great advantages.
SiC MOSFET market highly competitive, STM comes out on top
With the successful application of high-quality 6H-SiC and 4H-SiC epitaxial layer growth technology in the 1990s, the research and development of various SiC power components entered a period of rapid development, leading to their current ubiquity in sectors such as the automotive and industrial fields. From the perspective of competition patterns in the SiC power component market, as Tesla’s first SiC supplier, STM took first place in 2021 with a market share of 41%, Infineon took second place with 22%, followed by Wolfspeed, ROHM, ON Semi and other manufacturers.
TrendForce indicates, from the perspective of SiC MOSFET technology, trench structure’s powerful cost and performance advantages will see it become the mainstream technology in the future. Infineon and ROHM have been working on this a long time and these two companies have successively introduced this structure to the market as core products. STM, Wolfspeed, and On Semi still employ planar structures at this stage but their next generation products will also move to trench structures.
(Image credit: Pixabay)
Press Releases
At present, the materials with the most development potential are Wide Band Gap (WBG) semiconductors with high power and high frequency characteristics, including silicon carbide (SiC) and gallium nitride (GaN), which are mainly used in electric vehicles (EV) and the fast charging battery market. TrendForce research estimates, the output value of third generation power semiconductors will grow from US$980 million in 2021 to US$4.71 billion in 2025, with a CAGR of 48%.
SiC is suitable for high-power applications, such as energy storage, wind power, solar energy, EVs, new energy vehicles (NEV) and other industries that utilize highly demanding battery systems. Among these industries, EVs have attracted a great deal of attention from the market. However, most of the power semiconductors used in EVs currently on the market are Si base materials, such as Si IGBT and Si MOSFET. However, as EV battery power systems gradually develop to voltage levels greater than 800V, compared with Si, SiC will produce better performance in high-voltage systems. SiC is expected to gradually replace part of the Si base design, greatly improve vehicle performance, and optimize vehicle architecture. The SiC power semiconductor market is estimated to reach US$3.39 billion by 2025.
GaN is suitable for high-frequency applications, including communication devices and fast charging for mobile phones, tablets, and laptops. Compared with traditional fast charging, GaN fast charging has higher power density, so charging speed is faster within a smaller package that is easier to carry. These advantages have proven attractive to many OEMs and ODMs and several have started rapidly developing this material. The GaN power semiconductor market is estimated to reach US$1.32 billion by 2025.
TrendForce emphasizes that third generation power semiconductor substrates are more difficult to manufacture and more expensive compared to traditional Si bases. Taking advantage of the current development of major substrate suppliers, companies including Wolfspeed, II-VI, and Qromis successively expanded their production capacity and will mass-produce 8-inch substrates in the 2H22. Output value of third generation power semiconductors is estimated to have room for continued growth in the next few years.
Press Releases
Owing to the EV market’s substantial demand for longer driving ranges and shorter charging times, automakers’ race towards high-voltage EV platforms has noticeably intensified, with various major automakers gradually releasing models featuring 800V charging architectures, such as the Porsche Taycan, Audi Q6 e-tron, and Hyundai Ioniq 5. According to TrendForce’s latest investigations, demand from the global automotive market for 6-inch SiC wafers is expected to reach 1.69 million units in 2025 thanks to the rising penetration rate of EVs and the trend towards high-voltage 800V EV architecture.
The revolutionary arrival of the 800V EV charging architecture will bring about a total replacement of Si IGBT modules with SiC power devices, which will become a standard component in mainstream EV VFDs (variable frequency drives). As such, major automotive component suppliers generally favor SiC components. In particular, Tier 1 supplier Delphi has already begun mass producing 800V SiC inverters, while others such as BorgWarner, ZF, and Vitesco are also making rapid progress with their respective solutions.
At the moment, EVs have become a core application of SiC power devices. For instance, SiC usage in OBC (on board chargers) and DC-to-DC converters has been relatively mature, whereas the mass production of SiC-based VFDs has yet to reach a large scale. Power semiconductor suppliers including STM, Infineon, Wolfspeed, and Rohm have started collaborating with Tier 1 suppliers and automakers in order to accelerate SiC deployment in automotive applications.
It should be pointed out that the upstream supply of SiC substrate materials will become the primary bottleneck of SiC power device production, since SiC substrates involve complex manufacturing processes, high technical barriers to entry, and slow epitaxial growth. The vast majority of n-Type SiC substrates used for power semiconductor devices are 6 inches in diameter. Although major IDMs such as Wolfspeed have been making good progress in 8-inch SiC wafer development, more time is required for not only raising yield rate, but also transitioning power semiconductor fabs from 6-inch production lines to 8-inch production lines. Hence, 6-inch SiC substrates will likely remain the mainstream for at least five more years. On the other hand, with the EV market undergoing an explosive growth and SiC power devices seeing increased adoption in automotive applications, SiC costs will in turn directly determine the pace of 800V charging architecture deployment in EVs.
For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com
Press Releases
Apple recently unveiled its 140W MagSafe charger for the new MacBook Pro, marking the first time that Apple is adopting GaN technology. As such, 100+ watt fast charge products have thus entered a period of growth, in turn accelerating the adoption of third-generation semiconductor devices in consumer applications, according to TrendForce’s latest investigations. While GaN power transistor prices have dropped to nearly US$1 as of now, and GaN fast charge technologies continue to mature, TrendForce expects GaN solutions to reach a 52% penetration rate in the fast charge market in 2025.
TrendForce also indicates that the vast majority of GaN fast chargers’ peak power fell within the 55W-65W range in 2020. GaN fast chargers with 55W-65W of peak power accounted for 72% of all GaN fast charger sales last year, with 65W being the mainstream, whereas GaN fast chargers with 100W and more in peak power accounted for only 8%. Even so, the outlook for these high-power fast chargers appears relatively promising, as more and more companies release their own high-power fast chargers in response to consumers’ increasing energy consumption demand. Fast chargers with a peak power of 140W are the most powerful solution currently available.
Within the 100+ watt product category, GaN fast chargers have reached a penetration rate of 62%. These chargers are primarily supplied by Navitas and Innoscience. With a market share of more than 70%, Navitas’ GaN chips are used in products from Baseus, Lenovo, and Sharge, among others. On the other hand, PFC+LLC combo controllers have become the mainstream solution for 100+ watt fast chargers as these controllers allow for higher efficiency and smaller physical dimensions. The combination of SiC diodes and GaN switches results in increased PFC (power factor correction) frequency. As such, major manufacturers have quickly adopted the GaN+SiC wide bandgap semiconductor combo for their fast chargers.
For instance, Baseus released the world’s first ever 120W GaN (supplied by Navitas) + SiC (supplied by APS) fast charger in 2020 and saw excellent reception from the market. SiC power device suppliers, including Global Power Technology, Maplesemi, and onsemi, have also been ramping up their shipments to PD (power delivery) fast charger manufacturers. It should be pointed out that the fast charge interface has gradually become a standard feature in cars. In light of the rise of the high-power in-car charging market, the power consumption and maximum battery capacity of electronic products will propel the widespread application of third-generation semiconductors, including GaN and SiC, going forward.
For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com