Insights
Looking at the development of the global SiC (silicon carbide) industry, IDMs in Europe and the United States occupy an absolute leading position, with the United States accounting for more than half of the market share in the substrate material sector. In order to ensure long-term and stable development of the SiC business, major manufacturers have also successively intervened in key upstream substrate materials in an effort to control the supply chain. Therefore, vertical integration has become an important trend in the development of the SiC industry. The global market value of SiC power semiconductors is estimated to be approximately US$1.589 billion in 2022 and will reach US$5.302 billion by 2026, with a CAGR of 35%.
Wolfspeed holds more than half the world’s SiC substrate market share and is first to move to 8-inch wafers
SiC substrates are characterized by difficult growth conditions, arduous processing, and high technical thresholds, which have become a key constraint on downstream production capacity. At present, only a few manufacturers such as Wolfspeed, ROHM, ON Semi, and STM have the ability to independently produce SiC crystals. From the perspective of SiC substrate market share in 2021, the leading players in order of market share are: Wolfspeed at 62%, II-VI at 14%, SiCrystal at 13%, SK Siltron at 5%, and TankeBlue at 4%.
Increasing the number of components on a single wafer is one of the main methods of further reducing the cost of SiC power components, so the industry is fully promoting 8-inch transformation. 8-inch SiC wafers have issues such as difficult material growth, laborious dicing, and losses during dicing. At this stage, yield rate is low. Therefore, 8-inch SiC wafers will not have much impact on the industry in the short term but, in the long run, with breakthroughs in material growth and process yield, the final chip cost of 8-inch wafers will inevitably present great advantages.
SiC MOSFET market highly competitive, STM comes out on top
With the successful application of high-quality 6H-SiC and 4H-SiC epitaxial layer growth technology in the 1990s, the research and development of various SiC power components entered a period of rapid development, leading to their current ubiquity in sectors such as the automotive and industrial fields. From the perspective of competition patterns in the SiC power component market, as Tesla’s first SiC supplier, STM took first place in 2021 with a market share of 41%, Infineon took second place with 22%, followed by Wolfspeed, ROHM, ON Semi and other manufacturers.
TrendForce indicates, from the perspective of SiC MOSFET technology, trench structure’s powerful cost and performance advantages will see it become the mainstream technology in the future. Infineon and ROHM have been working on this a long time and these two companies have successively introduced this structure to the market as core products. STM, Wolfspeed, and On Semi still employ planar structures at this stage but their next generation products will also move to trench structures.
(Image credit: Pixabay)
Insights
With the continuous deterioration of the global environment and the exhaustion of fossil fuel energy, countries around the world are looking for new energy sources suitable for human survival and development. The construction of photovoltaic energy storage projects is an important measure to implement energy transformation. Third-generation semiconductors have the characteristics of high frequency, high power, high voltage resistance, high temperature resistance, and radiation resistance, which can promote highly efficient, highly reliably, and low cost of photovoltaic energy storage inverters and the green and low-carbon development of energy.
SiC will be widely used in high-power string/central inverters, while GaN is more suitable for household micro-inverters
As the photovoltaic industry enters the era of “large components, large inverters, large-span brackets, and large strings,” the voltage level of photovoltaic power plants has increased from 1000V to over 1500V and high-voltage SiC power components will be used extensively in string and centralized inverters. For residential micro-inverters with a power of up to 5kW, GaN power components have more advantages. Not only can they significantly improve overall conversion efficiency, effectively reduce the levelized cost of energy (LCOE), but also allow users to easily build smaller, lighter, and more reliable inverters.
Key SiC substrates are crucial to the development of third-generation semiconductors and major manufacturers are competing to get to market
SiC substrate is regarded as the core raw material of third-generation semiconductors. Its crystal growth is slow and process technology complex. Mass production is not easy. Conductive substrates can produce SiC power electronic components while semi-insulating substrates can be used for the fabrication of GaN microwave radio frequency components. In addition, due to the high difficulty of substrate preparation, its value is relatively high. The cost of SiC substrate accounts for approximately 50% of the total cost of components which demonstrates its importance in the industrial chain.
At present, the supply of the global SiC market is firmly in the hands of substrate manufacturers. Wolfspeed, II-VI and SiCrystal (subsidiary of ROHM) together account for nearly 90% of shipments. IDM manufacturers such as Infineon, STM, and Onsemi are actively developing upstream SiC substrates and expect to take full advantage of the supply chain to strengthen their competitiveness. Everyone wants to get a piece of the pie, so the battle for SiC substrates will become more and more fierce, but the wait will not be long to see where the industry eventually goes in coming years.
(Image credit: Pixabay )
Press Releases
Due to material shortages caused by insufficient semiconductor supply, to date, power management IC (PMIC) prices remain on an upward trend, according to TrendForce’s latest investigations. Average selling price (ASP) for 1H22 is forecast to increase by nearly 10%, reaching a record six year high.
In terms of the global supply chain, in addition to the production capacity of major IDM manufacturers including TI, Infineon, ADI, STMicroelectronics, NXP, ON Semiconductor, Renesas, Microchip, ROHM (Maxim has been acquired by ADI and Dialog by Renesas), IC design houses such as Qualcomm and MediaTek (MTK) have obtained a certain level of production capacity from foundries. Of these, TI is in a leadership position and the aforementioned companies possess a combined market share of over 80%.
In terms of product structure, unrelenting demand from the consumer electronics, telecommunications, industrial control systems, and automotive end-user sectors and product innovation driven by industrial transformation will push a dramatic increase in global market demand for PMICs. The largest application for PMICs is consumer electronic products and there are near term rumblings in demand for notebooks, Chromebooks, smartphones, and televisions. In addition, restocking impetus for a small number of structurally simple items such as low drop-out regulators (LDO) has encountered a real slowdown. However, since the demand placed on PMICs by electronic products is a structural increase, certain models are still experiencing shortages. Qualcomm and MTK are limited by a shortage of mature production capacity on the foundry end, even resulting in a tightening of inventory for PMICs earmarked for self-use.
Furthermore, recovery in the automotive market and rapid growth in electric vehicles, automotive electronics, and advanced driver-assistance systems (ADAS) have increased demand in power source control and management and charging technology. In addition, automotive-use ICs are required to pass a number of inspections and must guarantee consistency and a zero failure rate. Currently, IDM companies’ automotive IC order backlog stretches until the end of 2022. Due to factors such as production running at full capacity and a shortage of raw materials, PMIC suppliers have currently announced longer lead times with consumer electronic IC lead times increasing to 12~26 weeks, automotive IC lead times reaching 40~52 weeks, and a cessation of orders for certain exclusive production models.
TrendForce expects 4Q21 demand for PMICs to remain strong with shortages in overall production capacity. Led by IDM companies, PMIC pricing will remain high. Despite variables related to the pandemic and the difficulties of greatly increasing 8 inch wafer production capacity, TI’s new fab RFAB2 will begin mass production in 2H22. In addition, due to the plans of foundries to carry forward a portion of 8 inch wafer PMIC manufacturing to 12 inch, there is a high likelihood of a moderation in PMIC shortages. However, close attention must still be paid to changes in future market supply.
For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com